Take 3 consecutive days as an example, using the tool: MySQL. 1. Create SQL table:create table if not exists order(id varchar(10),date datetime,orders varchar(10)); insert into orde values('1' , '2019/1/1',10 ); insert into orde values('1' , '2019/1/2',109 ); insert into orde values('1' , '2019/1/3',150 ); insert into orde values('1' , '2019/1/4',99); insert into orde values('1' , '2019/1/5',145); insert into orde values('1' , '2019/1/6',1455); insert into orde values('1' , '2019/1/7',199); insert into orde values('1' , '2019/1/8',188 ); insert into orde values('4' , '2019/1/1',10 ); insert into orde values('2' , '2019/1/2',109 ); insert into orde values('3' , '2019/1/3',150 ); insert into orde values('4' , '2019/1/4',99); insert into orde values('5' , '2019/1/5',145); insert into orde values('6' , '2019/1/6',1455); insert into orde values('7' , '2019/1/7',199); insert into orde values('8' , '2019/1/8',188 ); insert into orde values('9' , '2019/1/1',10 ); insert into orde values('9' , '2019/1/2',109 ); insert into orde values('9' , '2019/1/3',150 ); insert into orde values('9' , '2019/1/4',99); insert into orde values('9' , '2019/1/6',145); insert into orde values('9' , '2019/1/9',1455); insert into orde values('9' , '2019/1/10',199); insert into orde values('9' , '2019/1/13',188 ); View the datasheet: 2. Use the row_number() over() sorting function to calculate the ranking of each id. The SQL is as follows:select *,row_number() over(partition by id order by date ) 'rank' from orde where orders is not NULL; View datasheet: 3. Subtract the rank field from the date field. The SQL is as follows:select *,DATE_SUB(a.date,interval a.rank day) 'date_sub' from( select *,row_number() over(partition by id order by date ) 'rank' from orde where orders is not NULL ) a; View the data: 4. Group by id and date and calculate the number of grouped items (count), and calculate the earliest and latest login times. The SQL is as follows:select b.id,min(date) 'start_time',max(date) 'end_time',count(*) 'date_count' from( select *,DATE_SUB(a.date,interval a.rank day) 'date_sub' from( select *,row_number() over(partition by id order by date ) 'rank' from orde where orders is not NULL ) ) b group by b.date_sub,id having count(*) >= 3 ; View the data: References: SQL query for users who have placed orders for at least seven consecutive days The above is the full content of this article. I hope it will be helpful for everyone’s study. I also hope that everyone will support 123WORDPRESS.COM. You may also be interested in:
|
<<: Summary of common tool functions necessary for front-end development
>>: Neon light effects implemented with pure CSS3
Table of contents Preface start Preface The defau...
Table of contents The first step of optimization:...
This article example shares the specific code of ...
Table of contents 1. JavaScript is single-threade...
To merge the following two files, merge them toge...
MySQL is now the database used by most companies ...
Scenario Yesterday the system automatically backe...
Table of contents 1. Introduction 2. Installation...
Preface The reduce() method receives a function a...
Table of contents use Install How to use it in ro...
Table of contents join algorithm The difference b...
You can install Docker and perform simple operati...
=================================================...
DOM Concepts DOM: document object model: The docu...
This article example shares the specific code of ...