Preface This article mainly shares with you the general steps for SQL statement optimization. It is shared for your reference and learning. Without further ado, let’s take a look at the detailed introduction. 1. Use the show status command to understand the execution frequency of various SQL statements After the mysql client is connected successfully,
# Com_xxx indicates the number of times each xxx statement is executed. mysql> show status like 'Com_%'; We are usually more concerned about the following statistical parameters:
The above parameters are accumulated for table operations of all storage engines. The following parameters are only for InnoDB, and the accumulation algorithm is slightly different:
Through the above parameters, you can easily understand whether the current database application is mainly based on insert updates or query operations, and the approximate execution ratio of various types of SQL. The count of update operations is the count of the number of executions, which is accumulated regardless of whether it is committed or rolled back. For transactional applications, In addition, the following parameters help users understand the basic situation of the database:
2. Define SQL statements with low execution efficiency 1. Use the slow query log to locate SQL statements with low execution efficiency. When started with 2. The slow query log is recorded only after the query is completed. Therefore, when the application reflects a problem with execution efficiency, the slow query log cannot locate the problem. You can use the show processlist command to view the current MySQL threads, including the thread status, whether the table is locked, etc. You can view the execution status of SQL in real time and optimize some table locking operations. 3. Analyze the execution plan of inefficient SQL through explain Test database address: https://downloads.mysql.com/docs/sakila-db.zip (local download) To count the total amount paid by a certain email for renting movie copies, you need to associate the customer table customer and the payment table payment, and perform a sum operation on the amount field. The corresponding execution plan is as follows: mysql> explain select sum(amount) from customer a , payment b where a.customer_id= b.customer_id and a.email='[email protected]'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 10.00 Extra: Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.a.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec)
1. mysql> explain select * from film where rating > 9 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: film partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1000 filtered: 33.33 Extra: Using where 1 row in set, 1 warning (0.01 sec) 2. mysql> explain select title form film\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: film partitions: NULL type: index possible_keys: NULL key: idx_title key_len: 767 ref: NULL rows: 1000 filtered: 100.00 Extra: Using index 1 row in set, 1 warning (0.00 sec) 3. mysql> explain select * from payment where customer_id >= 300 and customer_id <= 350 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: payment partitions: NULL type: range possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: NULL rows: 1350 filtered: 100.00 Extra: Using index condition 1 row in set, 1 warning (0.07 sec) 4. mysql> explain select * from payment where customer_id = 350 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: payment partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: const rows: 23 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.01 sec) The index mysql> explain select b.*, a.* from payment a,customer b where a.customer_id = b.customer_id \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 100.00 Extra: NULL *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.b.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec) 5. mysql> explain select * from film a , film_text b where a.film_id = b.film_id \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 1000 filtered: 100.00 Extra: NULL *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 2 ref: sakila.b.film_id rows: 1 filtered: 100.00 Extra: Using where 2 rows in set, 1 warning (0.03 sec) 6. mysql> create table test_const ( -> test_id int, -> test_context varchar(10), -> primary key (`test_id`), -> ); insert into test_const values(1,'hello'); explain select * from ( select * from test_const where test_id=1 ) a \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: test_const partitions: NULL type: const possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.00 sec) 7. mysql> explain select 1 from dual where 1 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: NULL partitions: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL filtered: NULL Extra: No tables used 1 row in set, 1 warning (0.00 sec) Type type has other values, such as
show warnings command After executing explain, execute MySQL [sakila]> explain select sum(amount) from customer a , payment b where 1=1 and a.customer_id = b.customer_id and email = '[email protected]'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 10.00 Extra: Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.a.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec) MySQL [sakila]> show warnings; +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Level | Code | Message | +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select sum(`sakila`.`b`.`amount`) AS `sum(amount)` from `sakila`.`customer` `a` join `sakila`.`payment` `b` where ((`sakila`.`b`.`customer_id` = `sakila`.`a`.`customer_id`) and (`sakila`.`a`.`email` = '[email protected]')) | +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec) From the warning message field, we can see that the optimizer automatically removes the condition that 1=1 always holds. In other words, the optimizer automatically removes the condition that always holds when rewriting SQL. The explain command also has support for partitions. MySQL [sakila]> CREATE TABLE `customer_part` ( -> `customer_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT, -> `store_id` tinyint(3) unsigned NOT NULL, -> `first_name` varchar(45) NOT NULL, -> `last_name` varchar(45) NOT NULL, -> `email` varchar(50) DEFAULT NULL, -> `address_id` smallint(5) unsigned NOT NULL, -> `active` tinyint(1) NOT NULL DEFAULT '1', -> `create_date` datetime NOT NULL, -> `last_update` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -> PRIMARY KEY (`customer_id`) -> -> ) partition by hash (customer_id) partitions 8; Query OK, 0 rows affected (0.06 sec) MySQL [sakila]> insert into customer_part select * from customer; Query OK, 599 rows affected (0.06 sec) Records: 599 Duplicates: 0 Warnings: 0 MySQL [sakila]> explain select * from customer_part where customer_id=130\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: customer_part partitions: p2 type: const possible_keys: PRIMARY key: PRIMARY key_len: 2 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warnings (0.00 sec) You can see that the partition accessed by sql is p2. 4. Analyze SQL performance through performance_schema Older versions of MySQL can use profiles to analyze SQL performance. I use version 5.7.18, which no longer allows the use of profiles. It is recommended to use 5. Use trace to analyze how the optimizer chooses the execution plan. MySQL 5.6 provides a trace function for SQL statements, which can help us better understand why the optimizer chooses execution plan A instead of execution plan B, and help us better understand the optimizer's behavior. Usage: First open the trace, set the format to json, and set the maximum memory size that the trace can use to avoid the incomplete display during the parsing process due to the default memory being too small. MySQL [sakila]> set optimizer_trace="enabled=on",end_markers_in_json=on; Query OK, 0 rows affected (0.00 sec) MySQL [sakila]> set optimizer_trace_max_mem_size=1000000; Query OK, 0 rows affected (0.00 sec) Next, execute the SQL statement you want to trace, for example, to find out the records of the movie copy with inventory number inventory_id 4466 in the rental table rental that was rented out between the rental date rental_date of 2005-05-25 4:00:00 ~ 5:00:00: mysql> select rental_id from rental where 1=1 and rental_date >= '2005-05-25 04:00:00' and rental_date <= '2005-05-25 05:00:00' and inventory_id=4466; +-----------+ | rental_id | +-----------+ | 39 | +-----------+ 1 row in set (0.06 sec) MySQL [sakila]> select * from information_schema.optimizer_trace\G *************************** 1. row *************************** QUERY: select * from infomation_schema.optimizer_trace TRACE: { "steps": [ ] /* steps */ } MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0 INSUFFICIENT_PRIVILEGES: 0 1 row in set (0.00 sec) 6. Identify the problem and take appropriate optimization measures After the above steps, the cause of the problem can be basically confirmed. At this time, appropriate measures can be taken according to the situation to optimize and improve execution efficiency. Summarize The above is the full content of this article. I hope that the content of this article can bring some help to your study or work. If you have any questions, you can leave a message to communicate. Thank you for your support of 123WORDPRESS.COM. You may also be interested in:
|
<<: How to deploy multiple Vue projects under the same domain name using nginx and use reverse proxy
>>: CocosCreator ScrollView optimization series: frame loading
How to use CSS to control the arc movement of ele...
Before the release of Microsoft IE 5.0, the bigges...
Table of contents 1. Installation Environment 2. ...
1. Create a centos7.6 system and optimize the sys...
This article example shares the specific implemen...
If someone asked you whether running EXPLAIN on a...
Network security is a very important topic, and t...
Table of contents 1. Preparation 2. Define the gl...
In actual development or production environments,...
Table of contents 1. Enter the network card confi...
As shown below: LOCATE(substr,str) Returns the fi...
introduction Today I learned how to connect to th...
MySQL CURDATE Function Introduction If used in a ...
1. Introduction ● Random writing will cause the h...
summary In some scenarios, there may be such a re...