MyISAM and InnoDB
Reasons for performance degradation and slow SQL:
Mysql execution order
SQLJoina table mysql> select * from tbl_dept; +----+----------+--------+ | id | deptName | locAdd | +----+----------+--------+ | 1 | RD | 11 | | 2 | HR | 12 | | 3 | MK | 13 | | 4 | MIS | 14 | | 5 | FD | 15 | +----+----------+--------+ 5 rows in set (0.00 sec) b table +----+------+--------+ | id | name | deptId | +----+------+--------+ | 1 | z3 | 1 | | 2 | z4 | 1 | | 3 | z5 | 1 | | 4 | w5 | 2 | | 5 | w6 | 2 | | 6 | s7 | 3 | | 7 | s8 | 4 | | 8 | s9 | 51 | +----+------+--------+ 8 rows in set (0.00 sec)
mysql> select * from tbl_dept a right join tbl_emp b on a.id=b.deptId -> union -> select * from tbl_dept a left join tbl_emp b on a.id=b.deptId; +------+----------+--------+------+------+--------+ | id | deptName | locAdd | id | name | deptId | +------+----------+--------+------+------+--------+ | 1 | RD | 11 | 1 | z3 | 1 | | 1 | RD | 11 | 2 | z4 | 1 | | 1 | RD | 11 | 3 | z5 | 1 | | 2 | HR | 12 | 4 | w5 | 2 | | 2 | HR | 12 | 5 | w6 | 2 | | 3 | MK | 13 | 6 | s7 | 3 | | 4 | MIS | 14 | 7 | s8 | 4 | | NULL | NULL | NULL | 8 | s9 | 51 | | 5 | FD | 15 | NULL | NULL | NULL | +------+----------+--------+------+------+--------+ 9 rows in set (0.00 sec) The uniqueness of a and the uniqueness of b
indexDefinition of index: An index is a data structure that helps SQL efficiently retrieve data. The essence of an index is: It can be simply understood as: In addition to the data, the database system also maintains data structures that satisfy specific search algorithms. These data structures point to the data in some way (reference), so that advanced search algorithms can be implemented on these data structures. This data structure is an index. The following figure is an example: Generally speaking, indexes are also very large, so they are often stored on disk as index files. When we talk about indexes, unless otherwise specified, we usually refer to indexes organized in a B-tree (multi-way search tree, not necessarily binary) structure. Among them, clustered index, secondary index, composite index, prefix index, and unique index all use B+ tree index by default, collectively referred to as index. Of course, in addition to B+ tree indexes, there are also hash indexes. Pros and cons of indexing1. AdvantagesSimilar to the indexing of book numbers in university libraries, it improves the efficiency of data retrieval and reduces the IO cost of the database. Sorting data by index reduces the cost of data sorting and reduces CPU consumption 2. DisadvantagesIn fact, the index is also a table that stores the primary key and the fields with indexes, and points to the records of the entity table, so the index column also takes up space. Although indexes greatly improve query speed, they slow down table updates, such as update, insert, and delete operations. This is because when updating a table, MySQL needs to save not only the data but also the index file. Each time you update a field with an index, it will adjust the index information after the key value changes caused by the update. Index is only one factor to improve efficiency. For a table with a large amount of data, you need to create the best index or write excellent query statements, rather than just adding indexes to improve efficiency. Index Classification
createcreate [unique] index indexName on mytable(cloumnname(length)); alter mytable add [unique] index [indexName] on (columnname(length)); deletedrop index [indexName] on mytable Checkshow index from table_name\G There are four ways to add indexes to a table: mysql index structure
In which cases should we create indexes?
When not to create an index
Performance AnalysisExplian key points What can you do?
Three situations of id
select_type
type::Type shows the access type arrangement, which is a more important indicator From best to worst they are: Generally speaking, you need to ensure that the query reaches at least the range level, preferably ref
key_len length: 13 because char(4)*utf8(3)+allowed to be null(1)=13
When no index is created, query the t1 t2 table. The id of the t1 table corresponding to the t2 table. The value of col1 in the t2 table must be 'ac' For the Id field, table t1 is equivalent to one-to-many for table t2. The type of the t1 table is eq_ref, which means unique index scan. There is only one record matching it in the table. There is only one col value corresponding to the id of the t1 table in the t2 table. According to the primary key id index query of the t2 table, one row is read from the t1 table and 640 rows are read from the t2 table. After indexing t1 reads one row, t2 reads 142 rows, ref non-unique index scan, returns all rows matching a single value, returns all rows of col corresponding to id in t2, but t1 has only one row of col corresponding to id, so type is eq_ref ExtraContains important information that does not fit in other columns \G : Display sorting vertically
Case Index optimizationSingle table optimizationCREATE TABLE IF NOT EXISTS `article`( `id` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT, `author_id` INT (10) UNSIGNED NOT NULL, `category_id` INT(10) UNSIGNED NOT NULL , `views` INT(10) UNSIGNED NOT NULL , `comments` INT(10) UNSIGNED NOT NULL, `title` VARBINARY(255) NOT NULL, `content` TEXT NOT NULL ); INSERT INTO `article`(`author_id`,`category_id`,`views`,`comments`,`title`,`content`)VALUES (1,1,1,1,'1','1'), (2,2,2,2,'2','2'), (1,1,3,3,'3','3'); SELECT * FROM ARTICLE; mysql> select id,author_id from article where category_id = 1 and comments > 1 order by views desc limit 1; +----+-----------+ | id | author_id | +----+-----------+ | 3 | 1 | +----+-----------+ 1 row in set (0.00 sec) mysql> explain select author_id from article where category_id = 1 and comments > 1 order by views desc li imit 1; +----+-------------+---------+------------+------+---------------+-----+---------+------+------+----------+-----------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+-----+---------+------+------+----------+-----------------------------+ | 1 | SIMPLE | article | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where; Using filesort | +----+-------------+---------+------------+------+---------------+-----+---------+------+------+----------+-----------------------------+ 1 row in set, 1 warning (0.00 sec) It can be seen that although the query is completed, the type is all, and using filesort appears in Extra, which proves that the query efficiency is very low. Need to be optimized Create an index create index idx_article_ccv on article(category_id,comments,views); Query mysql> explain select author_id from article where category_id = 1 and comments > 1 order by views desc limit 1; +----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+ | 1 | SIMPLE | article | NULL | range | inx_article_ccv | inx_article_ccv | 8 | NULL | 1 | 100.00 | Using index condition; Using filesort | +----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+ 1 row in set, 1 warning (0.00 sec) Here we find that type has changed to range, and querying the entire table has changed to range query, which is a bit optimized. However, extra still uses filesort, which proves that index optimization is not successful. So we delete the index drop index idx_article_ccv on article; Create a new index and exclude range create index idx_article_cv on article(category_id,views); mysql> explain select author_id from article where category_id = 1 and comments > 1 order by views desc limit 1; +----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+ | 1 | SIMPLE | article | NULL | ref | idx_article_cv | idx_article_cv | 4 | const | 2 | 33.33 | Using where | +----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) At this time, you will find that the optimization is successful. Type has changed to ref and extra has changed to using where In this experiment, I added another test and found that it is also feasible to put comments at the end when creating an index. mysql> create index idx_article_cvc on article(category_id,views,comments); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select author_id from article where category_id = 1 and comments > 1 order by views desc limit 1; +----+-------------+---------+------------+------+-----------------+-----------------+---------+-------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+-----------------+-----------------+---------+-------+------+----------+-------------+ | 1 | SIMPLE | article | NULL | ref | idx_article_cvc | idx_article_cvc | 4 | const | 2 | 33.33 | Using where | +----+-------------+---------+------------+------+-----------------+-----------------+---------+-------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec)
Here we find that type is still ref, extra is still usingwhere, but the index creation position is just changed, and the range query field is moved to the end!!!! Dual table optimizationCREATE TABLE IF NOT EXISTS `class`( `id` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT, `card` INT (10) UNSIGNED NOT NULL ); CREATE TABLE IF NOT EXISTS `book`( `bookid` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT, `card` INT (10) UNSIGNED NOT NULL ); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20))); mysql> create index Y on book(card); explain select * from book left join class on book.card=class.card; +----+-------------+-------+------------+-------+---------------+------+---------+------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+------+---------+------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | book | NULL | index | NULL | Y | 4 | NULL | 20 | 100.00 | Using index | | 1 | SIMPLE | class | NULL | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+------+---------+------+------+------+----------+----------------------------------------------------+ 2 rows in set, 1 warning (0.00 sec) You will find that there is not much difference and it is still a full table query. This is because the two tables are queried left-joined. The left table must be fully queried. At this time, it is only useful to create an index on the right table. Conversely, the right link must be indexed on the left table to be useful Create an index on the right table create index Y on class; explain select * from book left join class on book.card=class.card; +----+-------------+-------+------------+-------+---------------+------+--------+----------------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+------+--------+----------------+------+----------+-------------+ | 1 | SIMPLE | book | NULL | index | NULL | Y | 4 | NULL | 20 | 100.00 | Using index | | 1 | SIMPLE | class | NULL | ref | Y | Y | 4 | db01.book.card | 1 | 100.00 | Using index | +----+-------------+-------+------------+-------+---------------+------+--------+----------------+------+----------+-------------+ 2 rows in set, 1 warning (0.00 sec) You will find that the right table is only queried once. . type is ref Three table optimizationCREATE TABLE IF NOT EXISTS `phone`( `phoneid` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT, `card` INT (10) UNSIGNED NOT NULL )ENGINE = INNODB; INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20))); Delete all indexes first drop index Y on book; drop index Y on class; explain select * from class left join book on class.card=book.card left join phone on book.card=phone.card; +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | class | NULL | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | NULL | | 1 | SIMPLE | book | NULL | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | Using where; Using join buffer (Block Nested Loop) | | 1 | SIMPLE | phone | NULL | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ 3 rows in set, 1 warning (0.00 sec) Create an index create index y on book(card); create index z on phone(card); explain select * from class left join book on class.card=book.card left join phone on book.card=phone.card; +----+-------------+-------+------------+------+---------------+------+---------+----------------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+----------------+------+----------+-------------+ | 1 | SIMPLE | class | NULL | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | NULL | | 1 | SIMPLE | book | NULL | ref | y | y | 4 | db01.class.card | 1 | 100.00 | Using index | | 1 | SIMPLE | phone | NULL | ref | z | z | 4 | db01.book.card | 1 | 100.00 | Using index | +----+-------------+-------+------------+------+---------------+------+---------+----------------+------+----------+-------------+ 3 rows in set, 1 warning (0.00 sec) You will find that the index was created very successfully. . However, create index x on class(card); explain select * from class left join book on class.card=book.card left join phone on book.card=phone.card; +----+-------------+-------+------------+-------+---------------+------+---------+----------------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+------+---------+----------------+------+----------+-------------+ | 1 | SIMPLE | class | NULL | index | NULL | x | 4 | NULL | 20 | 100.00 | Using index | | 1 | SIMPLE | book | NULL | ref | y | y | 4 | db01.class.card | 1 | 100.00 | Using index | | 1 | SIMPLE | phone | NULL | ref | z | z | 4 | db01.book.card | 1 | 100.00 | Using index | +----+-------------+-------+------------+-------+---------------+------+---------+----------------+------+----------+-------------+ 3 rows in set, 1 warning (0.00 sec) The result is still the same Create table CREATE TABLE staffs( id INT PRIMARY KEY AUTO_INCREMENT, `name` VARCHAR(24)NOT NULL DEFAULT'' COMMENT'Name', `age` INT NOT NULL DEFAULT 0 COMMENT'Age', `pos` VARCHAR(20) NOT NULL DEFAULT'' COMMENT'Position', `add_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT'Job entry time' )CHARSET utf8 COMMENT'employee record table'; INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('z3',22,'manager',NOW()); INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('July',23,'dev',NOW()); INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('2000',23,'dev',NOW()); Create an index ALTER TABLE staffs ADD INDEX index_staffs_nameAgePos(`name`,`age`,`pos`); Index Tips
It can be seen from the above figure that the index cannot be used if the name is skipped mysql> explain select * from staffs where name='july'; +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+------+------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+------+------+ | 1 | SIMPLE | staffs | NULL | ref | index_staffs_nameAgePos | index_staffs_nameAgePos | 74 | const | 1 | 100.00 | NULL | +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+------+------+ 1 row in set, 1 warning (0.00 sec) mysql> explain select * from staffs where name='july' and pos='dev'; +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+----------+-----------------------+ | 1 | SIMPLE | staffs | NULL | ref | index_staffs_nameAgePos | index_staffs_nameAgePos | 74 | const | 1 | 33.33 | Using index condition | +----+-------------+--------+------------+------+-------------------------+-------------------------+----------+-------+------+----------+-----------------------+ 1 row in set, 1 warning (0.00 sec) It can be seen from the statement that key_len remains unchanged after skipping the middle index, proving that the index pos is not used.
Index CaseAssume index (a, b, c) Y means all indexes are used, N means none of them are used
Assume index (a, b, c, d) create table test03( id int primary key not null auto_increment, a int(10), b int(10), c int(10), d int(10), insert into test03(a,b,c,d) values (3,4,5,6); insert into test03(a,b,c,d) values (3,4,5,6); insert into test03(a,b,c,d) values (3,4,5,6); insert into test03(a,b,c,d) values (3,4,5,6); create index idx_test03_abcd on test03(a,b,c,d); ###
Group by is more serious. Group by groups first and then sorts. Replacing order by with group by may even cause using temporary, which is similar to order by, but more serious. The effect is similar to group by, so I will not demonstrate it. Order By Index Optimization
exsitesselect a.* from A a where exists(select 1 from B b where a.id=b.id) The above query uses the exists statement. exists() will be executed A.length times. It does not cache the exists() result set because the content of the exists() result set is not important. What is important is whether there are records in the result set. If there are records, true is returned, otherwise false is returned. Its query process is similar to the following process List resultSet=[]; Array A=(select * from A) for(int i=0;i<A.length;i++) { if(exists(A[i].id) { //Execute select 1 from B b where b.id=a.id to see if there is a record. return resultSet.add(A[i]); } } return resultSet; When the data in table B is larger than that in table A, it is suitable to use exists(), because it does not require so many traversal operations, and only needs to execute the query again. For example: table A has 10,000 records and table B has 1,000,000 records, then exists() will be executed 10,000 times to determine whether the id in table A is equal to the id in table B. For example: table A has 10,000 records and table B has 100,000,000 records, then exists() will still be executed 10,000 times, because it only executes A.length times. It can be seen that the more data in table B, the more suitable exists() is for it to work. For another example: table A has 10,000 records and table B has 100 records, then exists() will still be executed 10,000 times, it is better to use in() to traverse 10,000*100 times, because in() traverses and compares in memory, while exists() needs to query the database. We all know that querying the database consumes higher performance, and memory comparison is very fast. Mysql slow query log commandshow VARIABLES like '%slow_query_log%'; Displays whether to enable MySQL slow query log set global slow_query_log=0; Turn off MySQL slow query log set global slow_query_log=1; Enable MySQL slow query log show VARIABLES like '%long_query_time%'; Displays how long a slow query takes set global long_quert_time=10; Change the slow query time to 10 seconds. If the query statement time exceeds 10 seconds, it is a slow query. show global status like '%Slow_queries%'; Displays a total of several slow query statements [root@iZ0jlh1zn42cgftmrf6p6sZ data]# cat mysql-slow.log Linux query slow sql Function operation batch insert dataCREATE TABLE dept( id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, dname VARCHAR(20) NOT NULL DEFAULT '', loc VARCHAR(13) NOT NULL DEFAULT '' )ENGINE=INNODB DEFAULT CHARSET=GBK; CREATE TABLE emp( id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, empno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, #number enname VARCHAR(20) NOT NULL DEFAULT '', #name job VARCHAR(9) NOT NULL DEFAULT '', #job mgr MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, #superior number hiredate DATE NOT NULL, #time of employment sal DECIMAL(7,2) NOT NULL, #salary comm DECIMAL(7,2) NOT NULL, #bonus deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 #department number)ENGINE=INNODB DEFAULT CHARSET=GBK; show variables like 'log_bin_trust_function_creators'; set global log_bin_trust_function_creators=1;
//Define function 1 DELIMITER $$ CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255) BEGIN DECLARE chars_set VARCHAR(100) DEFAULT 'abcdefghigklmnopqrstuvwxyzABCDEFGHIGKLMNOPQRSTUVWXYZ'; DECLARE return_str VARCHAR(255) DEFAULT ''; DECLARE i INT DEFAULT 0; WHILE i < n DO SET return_str = CONCAT(return_str,SUBSTRING(chars_set,FLOOR(1 + RAND()*52),1)); SET i = i + 1; END WHILE; RETURN return_str; END $$ //Define function 2 DELIMITER $$ CREATE FUNCTION rand_num() RETURNS INT(5) BEGIN DECLARE i INT DEFAULT 0; SET i = FLOOR(100 + RAND()*10); RETURN i; END $$ //Define stored procedure 1 DELIMITER $$ CREATE PROCEDURE insert_emp(IN start INT(10), IN max_num INT(10)) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO emp(empno, enname, job, mgr, hiredate, sal, comm, deptno) VALUES((start + i),rand_string(6),'SALESMAN',0001,CURDATE(),2000,400,rand_num()); UNTIL i = max_num END REPEAT; COMMIT; END $$ //Define stored procedure 2 DELIMITER $$ CREATE PROCEDURE insert_dept(IN start INT(10), IN max_num INT(10)) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO dept(deptno,dname,loc) VALUES((start + i),rand_string(10),rand_string(8)); UNTIL i = max_num END REPEAT; COMMIT; END $$ //Start inserting data DELIMITER; call insert_dept(100,10); call insert_emp(100001,500000); show Profile analysis sqlmysql> show variables like 'profiling'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | profiling | OFF | +---------------+-------+ 1 row in set (0.00 sec) mysql> set profiling=on; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> show variables like 'profiling'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | profiling | ON | +---------------+-------+ 1 row in set (0.01 sec) Write a few insert statements at random' Displays the speed of query operation statements mysql> show profiles; +----------+------------+----------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+----------------------------------------------------------------+ | 1 | 0.00125325 | show variables like 'profiling' | | 2 | 0.00018850 | select * from dept | | 3 | 0.00016825 | select * from tb1_emp e inner join tbl_dept d on e.deptId=d.id | | 4 | 0.00023900 | show tables | | 5 | 0.00031125 | select * from tbl_emp e inner join tbl_dept d on e.deptId=d.id | | 6 | 0.00024775 | select * from tbl_emp e inner join tbl_dept d on e.deptId=d.id | | 7 | 0.00023725 | select * from tbl_emp e inner join tbl_dept d on e.deptId=d.id | | 8 | 0.00023825 | select * from tbl_emp e left join tbl_dept d on e.deptId=d.id | | 9 | 0.35058075 | select * from emp group by id%10 limit 15000 | | 10 | 0.35542250 | select * from emp group by id%10 limit 15000 | | 11 | 0.00024550 | select * from tbl_emp e left join tbl_dept d on e.deptId=d.id | | 12 | 0.36441850 | select * from emp group by id%20 order by 5 | +----------+------------+----------------------------------------------------------------+ 12 rows in set, 1 warning (0.00 sec) Display query process sql life cycle mysql> show profile cpu,block io for query 3; +----------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +----------------------+----------+----------+------------+--------------+---------------+ | starting | 0.000062 | 0.000040 | 0.000021 | 0 | 0 | | checking permissions | 0.000004 | 0.000003 | 0.000001 | 0 | 0 | | checking permissions | 0.000015 | 0.000006 | 0.000003 | 0 | 0 | | Opening tables | 0.000059 | 0.000039 | 0.000020 | 0 | 0 | | query end | 0.000004 | 0.000002 | 0.000001 | 0 | 0 | | closing tables | 0.000002 | 0.000001 | 0.000000 | 0 | 0 | | freeing items | 0.000014 | 0.000010 | 0.000005 | 0 | 0 | | cleaning up | 0.000009 | 0.000006 | 0.000003 | 0 | 0 | +----------------------+----------+----------+------------+--------------+---------------+ 8 rows in set, 1 warning (0.00 sec) mysql> show profile cpu,block io for query 12; +----------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +----------------------+----------+----------+------------+--------------+---------------+ | starting | 0.000063 | 0.000042 | 0.000021 | 0 | 0 | | checking permissions | 0.000006 | 0.000003 | 0.000002 | 0 | 0 | | Opening tables | 0.000013 | 0.000009 | 0.000004 | 0 | 0 | | init | 0.000028 | 0.000017 | 0.000008 | 0 | 0 | | System lock | 0.000007 | 0.000004 | 0.000002 | 0 | 0 | | optimizing | 0.000004 | 0.000002 | 0.000002 | 0 | 0 | | statistics | 0.000014 | 0.000010 | 0.000004 | 0 | 0 | | preparing | 0.000008 | 0.000005 | 0.000003 | 0 | 0 | | Creating tmp table | 0.000028 | 0.000018 | 0.000009 | 0 | 0 | | Sorting result | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | | executing | 0.000002 | 0.000002 | 0.000001 | 0 | 0 | | Sending data | 0.364132 | 0.360529 | 0.002426 | 0 | 0 | | Creating sort index | 0.000053 | 0.000034 | 0.000017 | 0 | 0 | | end | 0.000004 | 0.000002 | 0.000002 | 0 | 0 | | query end | 0.000007 | 0.000005 | 0.000002 | 0 | 0 | | removing tmp table | 0.000005 | 0.000003 | 0.000002 | 0 | 0 | | query end | 0.000003 | 0.000002 | 0.000001 | 0 | 0 | | closing tables | 0.000006 | 0.000004 | 0.000002 | 0 | 0 | | freeing items | 0.000023 | 0.000016 | 0.000007 | 0 | 0 | | cleaning up | 0.000012 | 0.000007 | 0.000004 | 0 | 0 | +----------------------+----------+----------+------------+--------------+---------------+ 20 rows in set, 1 warning (0.00 sec) If any of the above four occurs, the query statement needs to be optimized Global query logset global general_log=1; set global log_output='TABLE'; After that, the SQL statements you write will be recorded in the general_log table in the MySQL database, and can be viewed with the following command select * from mysql.general_log; mysql> select * from mysql.general_log; +----------------------------+---------------------------+-----------+-----------+--------------+---------------------------------+ | event_time | user_host | thread_id | server_id | command_type | argument | +----------------------------+---------------------------+-----------+-----------+--------------+---------------------------------+ | 2021-12-06 11:53:53.457242 | root[root]@localhost [] | 68 | 1 | Query | select * from mysql.general_log | +----------------------------+---------------------------+-----------+-----------+--------------+---------------------------------+ 1 row in set (0.00 sec) Mysql lock
Test the table lock below use big_data; create table mylock ( id int not null primary key auto_increment, name varchar(20) default '' ) engine myisam; insert into mylock(name) values('a'); insert into mylock(name) values('b'); insert into mylock(name) values('c'); insert into mylock(name) values('d'); insert into mylock(name) values('e'); select * from mylock; Lock Commandlock table mylock read,book write;## read lock mylock write lock book show open tables; ##Show which tables are locked unlock tables;##Cancel the lock Table lock: read lock##After adding a read lock, it cannot be modifiedmysql> lock table mylock read;##1 Query OK, 0 rows affected (0.00 sec) mysql> select * from mylock;##1 +----+------+ | id | name | +----+------+ | 1 | a | | 2 | b | | 3 | c | | 4 | d | | 5 | e | +----+------+ 5 rows in set (0.00 sec) mysql> update mylock set name='a2' where id=1; ##1 ERROR 1099 (HY000): Table 'mylock' was locked with a READ lock and can't be updated ##Cannot change the table currently locked by read lock##Cannot read other tablesmysql> select * from book;##1 ERROR 1100 (HY000): Table 'book' was not locked with LOCK TABLES To distinguish the two commands, treat 1 as the operation on the original MySQL command terminal and 2 as the newly created MySQL terminal. Create a new mysql terminal command operation ##Create a new mysql terminal command operationmysql> update mylock set name='a3' where id=1; ##2 Blocking operations are found Cancel the lock on the original mysql command terminal unlock tables;##1 Query OK, 1 row affected (2 min 1.46 sec) ##2 Rows matched: 1 Changed: 1 Warnings: 0 ##2 You will find that it has been blocked for more than two minutes. Summary: After reading and locking the table mylock: 1. Query operation: The current client (terminal command operation 1) can query the table mylock Other clients (terminal command operation 2) can also query the table mylock 2. DML operations (add, delete, and modify) on the current client will fail and report an error ERROR 1099 (HY000): Table 'mylock' was locked with a READ lock and can't be updated Other clients performing DML operations will cause MySQL to be blocked until the current session releases the lock Table lock: write lockmysql> lock table mylock write; Query OK, 0 rows affected (0.00 sec) Add a write lock to the current session mylock table mysql> update mylock set name='a4'where id=1; Query OK, 1 row affected (0.00 sec) Rows matched: 1 Changed: 1 Warnings: 0 mysql> select * from mylock; +----+------+ | id | name | +----+------+ | 1 | a4 | | 2 | b | | 3 | c | | 4 | d | | 5 | e | +----+------+ mysql> select * from book; ERROR 1100 (HY000): Table 'book' was not locked with LOCK TABLES You will find that you cannot operate other tables but you can operate the locked table. Open a new client to test the locked table mysql> select * from mylock; 5 rows in set (2 min 30.92 sec) It is found that the table locked by the write lock will be blocked when the new client operates (add, delete, modify, and query) do
mysql> show status like 'table%'; +----------------------------+-------+ | Variable_name | Value | +----------------------------+-------+ | Table_locks_immediate | 194 | | Table_locks_waited | 0 | | Table_open_cache_hits | 18 | | Table_open_cache_misses | 2 | | Table_open_cache_overflows | 0 | +----------------------------+-------+ 5 rows in set (0.00 sec) Row LockInnoDB row lock mode InnoDB implements the following two types of row locks.
For UPDATE, DELETE, and INSERT statements, InnoDB automatically adds an exclusive lock (X) to the data set involved; For normal SELECT statements, InnoDB does not add any locks; You can use the following statement to explicitly add a shared lock or an exclusive lock to the record set. Shared lock(s): SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE Exclusive lock (X): SELECT * FROM table_name WHERE ... FOR UPDATE Since row locks support transactions, let's review it here TransactionsA transaction is a logical processing unit consisting of a group of SQL statements. A transaction has four properties: ACID
Problems caused by concurrent transactions:
In order to solve the transaction concurrency problem mentioned above, the database provides a certain transaction isolation mechanism to solve this problem. The stricter the transaction isolation of the database, the smaller the concurrency side effects, but the greater the price paid, because transaction isolation is essentially the use of transactions to a certain extent "serialize", which is obviously contradictory to "concurrency". There are four isolation levels for the database, from low to high: Read uncommitted, Read committed, Repeatable read, and Serializable. These four levels can solve problems such as dirty writes, dirty reads, non-repeatable reads, and phantom reads one by one.
Note: The default isolation level of the MySQL database is Repeatable read. Check it: show variables like 'tx_isolation'; Row lock test table creation, case preparation create table test_innodb_lock( id int(11), name varchar(16), sex varchar(1) )engine = innodb default charset = utf8; insert into test_innodb_lock values(1,'100','1'); insert into test_innodb_lock values(3,'3','1'); insert into test_innodb_lock values(4,'400','0'); insert into test_innodb_lock values(5,'500','1'); insert into test_innodb_lock values(6,'600','0'); insert into test_innodb_lock values(7,'700','0'); insert into test_innodb_lock values(8,'800','1'); insert into test_innodb_lock values(9,'900','1'); insert into test_innodb_lock values(1,'200','0'); create index idx_test_innodb_lock_id on test_innodb_lock(id); create index idx_test_innodb_lock_name on test_innodb_lock(name); Row lock testOr open two terminals for testing and turn off automatic transaction submission, because automatic transaction submission will automatically lock and release the lock; mysql> set autocommit=0; mysql> set autocommit=0;
Update the left side mysql> update test_innodb_lock set name='100' where id=3; Query OK, 0 rows affected (0.00 sec) Rows matched: 1 Changed: 0 Warnings: 0 Update the left side Stop the operation after updating the right side mysql> update test_innodb_lock set name='340' where id=3; ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction You will find that it is blocked until the lock is released or the transaction is committed.
Other transactions cannot execute this statement, but can operate on data in other rows.
Remember to use indexes when performing operations: when the innodb engine index fails, the row lock will be upgraded to a table lock mysql> update test_innodb_lock set sex='2' where name=400; Query OK, 0 rows affected (0.00 sec) Rows matched: 2 Changed: 0 Warnings: 0 Note that the index will be invalid if the name is not enclosed in single quotes mysql> update test_innodb_lock set sex='3' where id=3; Query OK, 1 row affected (23.20 sec) Rows matched: 1 Changed: 1 Warnings: 0 It was found that operations on other rows were also blocked. This was because the row lock was upgraded to a table lock due to the lack of indexes. Originally, only one row of data was locked, but because I forgot to add single quotes to the name field, the index became invalid and the entire table was locked; Gap LockWhen we use a range condition instead of a wait condition to retrieve data and request a shared or exclusive lock, there is a non-existent record in that range condition, called a gap. InnoDB will also lock this gap. This locking mechanism is called a gap lock. mysql> select * from test_innodb_lock; +------+------+------+ | id | name | sex | +------+------+------+ | 1 | 100 | 2 | | 3 | 100 | 3 | | 4 | 400 | 0 | | 5 | 500 | 1 | | 6 | 600 | 0 | | 7 | 700 | 3 | | 8 | 800 | 1 | | 9 | 900 | 2 | | 1 | 200 | 0 | +------+------+------+ There is no data with id 2 Check row lock requisition status mysql> show status like 'innodb_row_lock%'; +-------------------------------+--------+ | Variable_name | Value | +-------------------------------+--------+ | Innodb_row_lock_current_waits | 0 | | Innodb_row_lock_time | 284387 | | Innodb_row_lock_time_avg | 21875 | | Innodb_row_lock_time_max | 51003 | | Innodb_row_lock_waits | 13 | +-------------------------------+--------+ 5 rows in set (0.00 sec) Innodb_row_lock_current_waits: The number of rows currently waiting for locks. Innodb_row_lock_time: The total length of time locked from system startup to now. Innodb_row_lock_time_avg: average time spent waiting each time Innodb_row_lock_time_max: The longest waiting time from system startup to now. Innodb_row_lock_waits: The total number of waits since the system was started Row Lock SummaryThe InnoDB storage engine implements row-level locking. Although the performance loss in the implementation of the locking mechanism may be higher than that of the table lock, its overall concurrent processing capability is far superior to that of the MyISAM table lock. When the system concurrency is high, InnoDB's overall performance will have a clear advantage over MyISAM. However, InnoDB's row-level locks also have their fragile side. If we use them improperly, the overall performance of InnoDB may not only be lower than that of MyISAM, but may even be worse. Optimization suggestions:
The above is the full content of this article. I hope it will be helpful for everyone’s study. I also hope that everyone will support 123WORDPRESS.COM. You may also be interested in:
|
<<: Specific use of Docker anonymous mount and named mount
>>: Detailed explanation of the use of Vue h function
Table of contents Preface The role of deconstruct...
In the project, you will encounter custom public ...
The parameter passed by ${param} will be treated ...
1. Custom text selection ::selection { background...
top command is the best command that everyone is ...
Step 1: Create a Django project Open the terminal...
Summary: What method should be used for MySQL JDB...
This article example shares the specific code of ...
Table of contents Preface 1. Preparation 2. Actua...
Table of contents Business scenario: Effect demon...
Table of contents 1. Create objects by literal va...
Responsive layout systems are already very common...
Preface When operating and managing Linux servers...
Preface Tip: Here you can add the approximate con...
Table of contents Preface Environment Preparation...