How to configure the pdflatex environment in docker

How to configure the pdflatex environment in docker

Technical Background

Latex is an indispensable tool in document writing, especially in writing articles, it is a must-use text typesetting tool. However, the deployment of the latex environment is not a particularly user-friendly operation, especially since the operations on different platforms are completely different and errors are often reported. We can solve the error problems one by one, but this requires a lot of energy and time, so many people choose to create latex directly in overleaf. But in fact, Overleaf also has its disadvantages. For example, the bandwidth and speed of the free version are relatively limited, especially in domestic networks, where the access speed is extremely slow. Therefore, here we introduce a more user-friendly solution, which is very compatible with all major platforms: using docker to deploy the latex environment.

Basic Operations of Docker

The official sources of major platforms should all provide Docker containers, so we will not go into details here. The author has written a blog in the past about using Docker to deploy the MindSpore development environment. Interested readers can read it as an extension article.

First, we start Docker on the Manjaro Linux platform (the operation on other platforms may be different, such as service start docker , etc.):

[dechin-root tex]# systemctl start docker

Note that the above instructions can only be started under the root account. If you choose to operate under a non-root account, the Docker container is not supported, but we can choose a similar container solution such as singularity. For related content, please refer to this blog. After starting the service, under normal circumstances we can see that the status of docker is in active or running state:

[dechin-root tex]# systemctl status docker
● docker.service - Docker Application Container Engine
  Loaded: loaded (/usr/lib/systemd/system/docker.service; disabled; vendor preset: disable>
  Active: active (running) since Sun 2021-03-28 18:50:47 CST; 7s ago
TriggeredBy: ● docker.socket
  Docs: https://docs.docker.com
 Main PID: 25366 (dockerd)
  Tasks: 123 (limit: 47875)
  Memory: 219.1M
  CGroup: /system.slice/docker.service
    ├─25366 /usr/bin/dockerd -H fd://
    └─25378 containerd --config /var/run/docker/containerd/containerd.toml --log-l>

Pull container image

First, we can visit the dockerhub official website to search whether there is the container image we need. For example, our search results are as follows:


You can see that there are many options here. Generally, we can directly select the container image with the highest star to download and use:

[dechin-root tex]# docker pull fbenz/pdflatex
Using default tag: latest
latest: Pulling from fbenz/pdflatex
f22ccc0b8772: Already exists 
3cf8fb62ba5f: Already exists 
e80c964ece6a: Already exists 
9aa2583757a3: Pull complete 
2c3d7890d583: Pull complete 
Digest: sha256:6ecca11b1a203faed5c0a2ace2a13aac100dd19d7a4e0db0474283bcded3c041
Status: Downloaded newer image for fbenz/pdflatex:latest
docker.io/fbenz/pdflatex:latest

The download will take some time. After the download is complete, you can find the image file you just downloaded in the local image repository:

[dechin-root tex]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
fbenz/pdflatex latest 8e7742722956 3 months ago 24GB

We can test whether the pdflatex function in this container image is normal:

[dechin-root tex]# docker run -it fbenz/pdflatex pdflatex --help
Usage: pdftex [OPTION]... [TEXNAME[.tex]] [COMMANDS]
 or: pdftex [OPTION]... \FIRST-LINE
 or: pdftex [OPTION]... &FMT ARGS
 Run pdfTeX on TEXNAME, usually creating TEXNAME.pdf.
 Any remaining COMMANDS are processed as pdfTeX input, after TEXNAME is read.
 If the first line of TEXNAME is %&FMT, and FMT is an existing .fmt file,
 use it. Else use `NAME.fmt', where NAME is the program invocation name,
 most commonly `pdftex'.

 Alternatively, if the first non-option argument begins with a backslash,
 interpret all non-option arguments as a line of pdfTeX input.

 Alternatively, if the first non-option argument begins with a &, the
 The next word is taken as the FMT to read, overriding all else. Any
 The remaining arguments are processed as above.

 If no arguments or options are specified, prompt for input.

-draftmode switch on draft mode (generates no output PDF)
-enc enable encTeX extensions such as \mubyte
-etex enable e-TeX extensions
[-no]-file-line-error disable/enable file:line:error style messages
-fmt=FMTNAME use FMTNAME instead of program name or a %& line
-halt-on-error stop processing at the first error
-ini be pdfinitex, for dumping formats; this is implicitly
       true if the program name is `pdfinitex'
-interaction=STRING set interaction mode (STRING=batchmode/nonstopmode/
       scrollmode/errorstopmode)
-ipc sends DVI output to a socket as well as the usual
       output file
-ipc-start as -ipc, and also start the server at the other end
-jobname=STRING sets the job name to STRING
-kpathsea-debug=NUMBER set path searching debugging flags according to
       the bits of NUMBER
[-no]-mktex=FMT disable/enable mktexFMT generation (FMT=tex/tfm/pk)
-mltex enable MLTeX extensions such as \charsubdef
-output-comment=STRING use STRING for DVI file comment instead of date
       (no effect for PDF)
-output-directory=DIR use existing DIR as the directory to write files in
-output-format=FORMAT use FORMAT for job output; FORMAT is `dvi' or `pdf'
[-no]-parse-first-line disable/enable parsing of first line of input file
-progname=STRING set program (and fmt) name to STRING
-recorder enable filename recorder
[-no]-shell-escape disable/enable \write18{SHELL COMMAND}
-shell-restricted enable restricted \write18
-src-specials insert source specials into the DVI file
-src-specials=WHERE insert source specials in certain places of
       the DVI file. WHERE is a comma-separated value
       list: cr display hbox math par parend vbox
-synctex=NUMBER generate SyncTeX data for previewers according to
       bits of NUMBER (`man synctex' for details)
-translate-file=TCXNAME use the TCX file TCXNAME
-8bit make all characters printable by default
-help display this help and exit
-version output version information and exit

pdfTeX home page: <http://pdftex.org>

Email bug reports to [email protected].

When we see that help command runs successfully, it means that the container image can be used normally. Another thing to note when using containers is that if we directly use docker run -it fbenz/pdflatex , the local directory is not bound, so we cannot see the tex files written locally. Therefore, we generally need to add the -v option when running to bind the local directory. The basic usage method is: -v 本地目錄:容器目錄. Note that you need to use an absolute path, not a relative path.

Compile TeX file

After completing the deployment of the pdflatex environment based on docker in the above chapter, we can start writing some simple tex files to test the environment.

Hello World

First, let's test a simple case of hello world, which only outputs the words " Hello World! in the PDF document. The specific tex code is as follows:

[dechin@dechin-manjaro tex]$ cat hello_world.tex 
\documentclass{article}
\begin{document}
Hello world!
\end{document}

The usage is not difficult. First, we run the docker container, note that we need to bind a local path, and then enter the corresponding directory in the container:

[dechin-root tex]# docker run -it -v /home/dechin/projects/2021-python/tex/:/home/fbenz/pdflatex
root@d7ed2229a244:/#ll
total 72
drwxr-xr-x 1 root root 4096 Mar 28 11:07 ./
drwxr-xr-x 1 root root 4096 Mar 28 11:07 ../
-rwxr-xr-x 1 root root 0 Mar 28 11:07 .dockerenv*
drwxr-xr-x 2 root root 4096 Nov 19 13:09 bin/
drwxr-xr-x 2 root root 4096 Apr 24 2018 boot/
drwxr-xr-x 5 root root 360 Mar 28 11:07 dev/
drwxr-xr-x 1 root root 4096 Mar 28 11:07 etc/
drwxr-xr-x 2 1000 1000 4096 Mar 28 04:43 home/
drwxr-xr-x 1 root root 4096 May 23 2017 lib/
drwxr-xr-x 2 root root 4096 Nov 19 13:09 lib64/
drwxr-xr-x 2 root root 4096 Nov 19 13:07 media/
drwxr-xr-x 2 root root 4096 Nov 19 13:07 mnt/
drwxr-xr-x 2 root root 4096 Nov 19 13:07 opt/
dr-xr-xr-x 323 root root 0 Mar 28 11:07 proc/
drwx------ 2 root root 4096 Nov 19 13:09 root/
drwxr-xr-x 1 root root 4096 Nov 25 22:25 run/
drwxr-xr-x 1 root root 4096 Nov 25 22:25 sbin/
drwxr-xr-x 2 root root 4096 Nov 19 13:07 srv/
dr-xr-xr-x 13 root root 0 Mar 28 11:07 sys/
drwxrwxrwt 1 root root 4096 Nov 28 18:34 tmp/
drwxr-xr-x 1 root root 4096 Nov 19 13:07 usr/
drwxr-xr-x 1 root root 4096 Nov 19 13:09 var/
root@d7ed2229a244:/# cd home/
root@d7ed2229a244:/home#ll
total 12
drwxr-xr-x 2 1000 1000 4096 Mar 28 04:43 ./
drwxr-xr-x 1 root root 4096 Mar 28 11:07 ../
-rw-r--r-- 1 1000 1000 69 Mar 28 04:43 hello_world.tex

We can see that this tex file can also be seen in the directory within the container, indicating that the path binding has been successfully executed. The running instruction is very simple, just run pdflatex your_file.tex directly in the docker container:

root@d7ed2229a244:/home# pdflatex hello_world.tex 
This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=pdflatex)
 restricted \write18 enabled.
entering extended mode
(./hello_world.tex
LaTeX2e <2017-04-15>
Babel <3.18> and hyphenation patterns for 84 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo))
No file hello_world.aux.
[1{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] (./hello_world.aux) )
sr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb>
Output written on hello_world.pdf (1 page, 11916 bytes).
Transcript written on hello_world.log.
root@d7ed2229a244:/home#ll
total 32
drwxr-xr-x 2 1000 1000 4096 Mar 28 11:08 ./
drwxr-xr-x 1 root root 4096 Mar 28 11:07 ../
-rw-r--r-- 1 root root 8 Mar 28 11:08 hello_world.aux
-rw-r--r-- 1 root root 2408 Mar 28 11:08 hello_world.log
-rw-r--r-- 1 root root 11916 Mar 28 11:08 hello_world.pdf
-rw-r--r-- 1 1000 1000 69 Mar 28 04:43 hello_world.tex
root@d7ed2229a244:/home# chmod -R 777 .
root@d7ed2229a244:/home#ll
total 32
drwxrwxrwx 2 1000 1000 4096 Mar 28 11:08 ./
drwxr-xr-x 1 root root 4096 Mar 28 11:07 ../
-rwxrwxrwx 1 root root 8 Mar 28 11:08 hello_world.aux*
-rwxrwxrwx 1 root root 2408 Mar 28 11:08 hello_world.log*
-rwxrwxrwx 1 root root 11916 Mar 28 11:08 hello_world.pdf*
-rwxrwxrwx 1 1000 1000 69 Mar 28 04:43 hello_world.tex*

After the run is complete, we can see several newly generated files in the directory. If the permissions are changed 777 by root, then the local non-root account can edit them, otherwise they can only be viewed. We can open this pdf file locally and see:


You can see that the pdf file is generated successfully.

Test formula

The hello world example above is relatively simple. Let's test whether there is a problem with the most commonly used mathematical formulas:

[dechin@dechin-manjaro tex]$ cat equation_test.tex 
\documentclass{article}
\begin{document}
Hello world!
\begin{equation}
  e^{iHt}\left|\psi\right>
\end{equation}
\end{document}

Similar to the previous section, we also need to enter the container to execute relevant instructions, and finally obtain a pdf file as shown below:


We can see that the formula display is also normal.

Quantum circuit diagram

Finally, we test a more difficult one. I have previously written a blog about using ProjectQ to generate quantum circuit diagrams in Latex format, which generated a tex file as shown below:

[dechin@dechin-manjaro quantum-circuit]$ cat circuit.tex 
\documentclass{standalone}
\usepackage[margin=1in]{geometry}
\usepackage[hang,small,bf]{caption}
\usepackage{tikz}
\usepackage{braket}
\usetikzlibrary{backgrounds,shadows.blur,fit,decorations.pathreplacing,shapes}

\begin{document}
\begin{tikzpicture}[scale=0.8, transform shape]

\tikzstyle{basicshadow}=[blur shadow={shadow blur steps=8, shadow xshift=0.7pt, shadow yshift=-0.7pt, shadow scale=1.02}]\tikzstyle{basic}=[draw,fill=white,basicshadow]
\tikzstyle{operator}=[basic,minimum size=1.5em]
\tikzstyle{phase}=[fill=black,shape=circle,minimum size=0.1cm,inner sep=0pt,outer sep=0pt,draw=black]
\tikzstyle{none}=[inner sep=0pt,outer sep=-.5pt,minimum height=0.5cm+1pt]
\tikzstyle{measure}=[operator,inner sep=0pt,minimum height=0.5cm, minimum width=0.75cm]
\tikzstyle{xstyle}=[circle,basic,minimum height=0.35cm,minimum width=0.35cm,inner sep=-1pt,very thin]
\tikzset{
shadowed/.style={preaction={transform canvas={shift={(0.5pt,-0.5pt)}}, draw=gray, opacity=0.4}},
}
\tikzstyle{swapstyle}=[inner sep=-1pt, outer sep=-1pt, minimum width=0pt]
\tikzstyle{edgestyle}=[very thin]

\node[none] (line0_gate0) at (0.1,-0) {$\Ket{0}$};
\node[none] (line0_gate1) at (0.5,-0) {};
\node[none,minimum height=0.5cm,outer sep=0] (line0_gate2) at (0.75,-0) {};
\node[none] (line0_gate3) at (1.0,-0) {};
\draw[operator,edgestyle,outer sep=0.5cm] ([yshift=0.25cm]line0_gate1) rectangle ([yshift=-0.25cm]line0_gate3) node[pos=.5] {H};
\draw (line0_gate0) edge[edgestyle] (line0_gate1);
\node[none] (line1_gate0) at (0.1,-1) {$\Ket{0}$};
\node[none] (line1_gate1) at (0.5,-1) {};
\node[none,minimum height=0.5cm,outer sep=0] (line1_gate2) at (0.75,-1) {};
\node[none] (line1_gate3) at (1.0,-1) {};
\draw[operator,edgestyle,outer sep=0.5cm] ([yshift=0.25cm]line1_gate1) rectangle ([yshift=-0.25cm]line1_gate3) node[pos=.5] {H};
\draw (line1_gate0) edge[edgestyle] (line1_gate1);
\node[none] (line2_gate0) at (0.1,-2) {$\Ket{0}$};
\node[none] (line2_gate1) at (0.5,-2) {};
\node[none,minimum height=0.5cm,outer sep=0] (line2_gate2) at (0.75,-2) {};
\node[none] (line2_gate3) at (1.0,-2) {};
\draw[operator,edgestyle,outer sep=0.5cm] ([yshift=0.25cm]line2_gate1) rectangle ([yshift=-0.25cm]line2_gate3) node[pos=.5] {H};
\draw (line2_gate0) edge[edgestyle] (line2_gate1);
\node[xstyle] (line1_gate4) at (1.4000000000000001,-1) {};
\draw[edgestyle] (line1_gate4.north)--(line1_gate4.south);
\draw[edgestyle] (line1_gate4.west)--(line1_gate4.east);
\node[phase] (line2_gate4) at (1.4000000000000001,-2) {};
\draw (line2_gate4) edge[edgestyle] (line1_gate4);
\draw (line1_gate3) edge[edgestyle] (line1_gate4);
\draw (line2_gate3) edge[edgestyle] (line2_gate4);
\node[xstyle] (line0_gate4) at (1.9500000000000002,-0) {};
\draw[edgestyle] (line0_gate4.north)--(line0_gate4.south);
\draw[edgestyle] (line0_gate4.west)--(line0_gate4.east);
\node[phase] (line1_gate5) at (1.9500000000000002,-1) {};
\draw (line1_gate5) edge[edgestyle] (line0_gate4);
\draw (line0_gate3) edge[edgestyle] (line0_gate4);
\draw (line1_gate4) edge[edgestyle] (line1_gate5);
\node[measure,edgestyle] (line0_gate5) at (2.6000000000000005,-0) {};
\draw[edgestyle] ([yshift=-0.18cm,xshift=0.07500000000000001cm]line0_gate5.west) to [out=60,in=180] ([yshift=0.035cm]line0_gate5.center) to [out=0, in=120] ([yshift=-0.18cm,xshift=-0.07500000000000001cm]line0_gate5.east);
\draw[edgestyle] ([yshift=-0.18cm]line0_gate5.center) to ([yshift=-0.07500000000000001cm,xshift=-0.18cm]line0_gate5.north east);
\draw (line0_gate4) edge[edgestyle] (line0_gate5);
\node[measure,edgestyle] (line1_gate6) at (2.6000000000000005,-1) {};
\draw[edgestyle] ([yshift=-0.18cm,xshift=0.07500000000000001cm]line1_gate6.west) to [out=60,in=180] ([yshift=0.035cm]line1_gate6.center) to [out=0, in=120] ([yshift=-0.18cm,xshift=-0.07500000000000001cm]line1_gate6.east);
\draw[edgestyle] ([yshift=-0.18cm]line1_gate6.center) to ([yshift=-0.07500000000000001cm,xshift=-0.18cm]line1_gate6.north east);
\draw (line1_gate5) edge[edgestyle] (line1_gate6);
\node[measure,edgestyle] (line2_gate5) at (2.0500000000000003,-2) {};
\draw[edgestyle] ([yshift=-0.18cm,xshift=0.07500000000000001cm]line2_gate5.west) to [out=60,in=180] ([yshift=0.035cm]line2_gate5.center) to [out=0, in=120] ([yshift=-0.18cm,xshift=-0.07500000000000001cm]line2_gate5.east);
\draw[edgestyle] ([yshift=-0.18cm]line2_gate5.center) to ([yshift=-0.07500000000000001cm,xshift=-0.18cm]line2_gate5.north east);
\draw (line2_gate4) edge[edgestyle] (line2_gate5);

\end{tikzpicture}
\end{document}

This file not only has a complex structure, but also depends on many surrounding tex files. Previously, when testing the compilation of this tex file on other platforms (Win10), it was necessary to manually download many dependent files and then put them in the same folder to run and use it normally. Here we run it directly and find that we can also generate this pdf file:


This shows that the environment does contain many necessary tools, which should be similar to the overleaf environment, allowing us to compile tex files locally in a very user-friendly and lightweight way.

Summary

In order to build a highly usable and easy-to-deploy environment locally, we chose to abandon the solution of directly installing pdflatex and the online overleaf solution. These solutions have their own advantages and disadvantages, but overall, for personal use, it is the most convenient and user-friendly to directly deploy a tex compilation environment locally using a docker image.

Copyright Notice

The original link of this article is: https://www.cnblogs.com/dechinphy/p/pdflatex.html
Author ID: DechinPhy

Reference link: https://www.cnblogs.com/dechinphy/p/circuit.html

This is the end of this article about the methods and steps for configuring the pdflatex environment in docker. For more information about configuring the pdflatex environment in docker, please search for previous articles on 123WORDPRESS.COM or continue to browse the following related articles. I hope you will support 123WORDPRESS.COM in the future!

You may also be interested in:
  • Docker Quick Start and Environment Configuration Details

<<:  Code to enable IE8 in IE7 compatibility mode

>>:  Detailed explanation of CSS weight value (cascading) examples

Recommend

setup+ref+reactive implements vue3 responsiveness

Setup is used to write combined APIs. The interna...

Briefly describe the difference between MySQL and Oracle

1. Oracle is a large database while MySQL is a sm...

Detailed explanation of three ways to wrap text in el-table header

Table of contents Problem Description Rendering T...

10 reasons why Linux is becoming more and more popular

Linux has been loved by more and more users. Why ...

Using zabbix to monitor the ogg process (Linux platform)

The ogg process of a database produced some time ...

Collapsed table row element bug

Let's take an example: The code is very simple...

How to view the IP address of Linux in VMware virtual machine

1. First, double-click the vmware icon on the com...

JavaScript to achieve magnifying glass effect

This article shares the specific code for JavaScr...

Linux remote control windows system program (three methods)

Sometimes we need to remotely run programs on the...

Example of nginx ip blacklist dynamic ban

When a website is maliciously requested, blacklis...

Ubuntu MySQL version upgraded to 5.7

A few days ago, the library said that the server ...